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INTRODUCTION

Let M denote an n-dimensional Haar subspace of Cl[a, h]. It is well
known [6] that in Chebyshev approximation, any fe C[a,b] has a
strongly unique best approximation B(f) from M, ie. there exists a
number > 0 such that

[f=mll = f— B+ I1BUf)—mi
for all me M, where 7 is taken to be the largest such number. Here
=7/, M, n).

There have been many results (see, e.g, [2, 5, 8]) on the existence of
uniform strong unicity constants which are independent of n, f, or M; we
are here concerned with uniformity with respect to f.

DEeFINITION 1. A set S< C[q, b] has a uniform strong unicity constant
if there exists a number "> 0 such that for all f€ S and all me M,

If=ml=0/=BOI+ T 1B(f)—m].
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E. W. Cheney [3] proved that whenever a function has a strongly
unique best approximate, then the best approximation operator B satisfies
a Lipschitz condition at f, i.¢., there exists a number 4( /) >0 such that

VB Y= B <AL — gl

for all ge Clu, b], where A(f) is taken to be the smallest such number. In
fact, the proof shows that 2 <2/

DEpINITION 2. A set S ([a, b] has a uniform Lipschitz constant if
there exists a number A such that for all fe€ S and all g€ C[a, b1,

IBUf)=Blg)l <A/ — gl

From the proof of E. W. Cheney’s result in [3] it follows that:

THrOREM | (Cheney). If S< Cla. b ] has a uniform strong unicity con-
stant T, then S hus a uniform Lipschitz constant A and one can take A <2/1".

For a set S< [a, h]. the results in [ 2] characterize the existence of a
uniform strong unicity constant in terms of limit extreme point sets. When-
ever there is a uniform strong unicity constant, there is by Theorem 1 a
uniform Lipschitz constant. This paper considers the situation when there
1s not a uniform strong unicity constant. In particular, Theorem 7 com-
pletely determines for a bounded set of functions which have no “almost
alternation sets” (see Definition 5} whether or not there is a uniform
Lipschitz constant.

It is known [1] that when M i1s not necessarily a Haar set, if B(-})
satisfies a Lipschitz condition at fand B( /) is unique, then B( /') is strongly
unique. In this paper’s circumstances, with M a Haar set, B(/) will be
unique, and it is surprising that, as seen in Example 1, if S has a uniform
Lipschitz constant then it need not have a uniform strong unicity constant.
This shows moreover, that there can be no inequality like ¢/y </ for some
¢ >0 corresponding to the inequality ~ <2/ of E. W. Cheney. Theorem
5(b)(ii), combined with the results in [2], gives general conditions when
there is no uniform strong unicity constant, but there is a uniform Lipschitz
constant. In case dim M =1, it is known [5] that there is a uniform strong
unicity constant and hence a uniform Lipschitz constant. Hence
throughout the paper it is assumed that 7> 2.

A major difficulty in the study of (uniform} Lipschitz constants is the
lack of characterizations for Lipschitz constants similar to the characteriza-
tions available for strong unicity constants.
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UNIFORM LIPSCHITZ CONSTANTS
2. DEFINITIONS AND NOTATION

Henceforth M =[1, |, the algebraic polynomials of degree less than or
equal to n—1. The best approximate from M to a given fe Cla, b] is
denoted by Bf or B(/). The extreme point set for /'is

E(f)= (x| =B ) =1 = Bf1)

and the positive (resp. negative} points £'(f} (resp. £ (f)) arc those
points xeE(f) where (f—Bf)Wx)=|lf—Bfl (resp. (f—Bf){x)=
— | f— Bf). Say the sign of a point in E"(f) or £ (f)1s + or —,
respectively. Let A(/) denote an alternation set of #+ 1 points for /. For
a finite set D denote its separation by sep D=min{|x— v|:x, yve D}. The
concept of a limit extreme point was important in studying uniform strong
unicity constants in [27.

DeriNITION 3. Let S=1{7,! be a sequence of functions in Cla. h]. A
point ve[a, b] is called a + limit extremal of § if for each & there exists
xS e EY(f,) such that lim, ., xJ =x. A — [imit extremal is defined
similarly. A point xe€[a, b] is a + limit extremal of S if for each &
there exists x7eE'(f,) and x, €E (f,) such that lim,_ 6 x/ =
lim, ., x, =x. Denote the three sets of these limit extremals by LE 7(S),
LE (S}, and LE*(S). respectively.

In general reference to the convergence of subsets of [«, ] refers to con-
vergence of sets in the compact metric space consisting of the nonempty.
ciosed subsets of [«, h] with the Hausdorff metric. For subsets 4, B<
[, h] the Hausdorff metric d(A, B) is defined by

d(A4, B) = max{max min |« — b|, max min |« — b }.
ac -t he B he B ue it

Note that if {4,} = A4, then 4= {lim x,:x, €4, for all k}.

DeriNITION 4. Let | f, ) = Cla, b] satisfy [E{f)} — E" Then E° is
called a limit extreme point set. If {A(f,)} - A" for some choice of A{f,).
call 4° a limir alternation set if |A"| =n + 1.

In addition to the above ideas in [2], we also use the idea of an almost
alternation set. Example 2 in [7] can be interpreted as an example of a
family of functions S which has an almost alternation set. In that example,
extended to [ —1, 1] and normalized so that Bf, =0 and {|f,||=1, | f.} 15
a sequence of functions such that f,(1,)> —1 for some w, e[¢, ] and
lim, ., fi{w,)= —1 so that w, is almost an alternation point for f,. First

let the “ordered distance” between alternation sets A{f)= {x,}”" | and
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A(g)=1{r;}""] be denoted by d,(A(f). A(g))=max,.,.,|x,— v,| when
x,eEY(f)and v e E*(g), or when x, e £ (f)and v, e £ (g); otherwise
do(A(f), A(g)) is set equal to h—a.

Remark. In fact, if we say that two alternation sets A(/) and A(g) are
equal if both x,=y,,i=1,.,n+1 and they alternate the same way. ie.,
x, e E"(f) implies v,e E*(g)and x, e E (f)implies y, € £ (g). then the
ordered distance is a distance function on the set of alternation sets.
Furthermore, this ordered distance is always at least as large as the
Hausdorff distance.

DEFINITION 5. A sequence S={f,}/ , does not have an almost alter-
nation set if whenever a sequence {g,},/_, satisfies lim, _ , [ig, —f.[=0

there is a constant M such that for all k=1, .,
Aol AL Alg V<M || fr — g0l

where A(f.) and A(g,) are any alternation sets for f, and g, respectively.

It follows from the definition that when there is no almost alternation
set and {g,} is a sequence such that lim, ., ||f; — g« =0, then
lim, ., dy(A(fi) A(g:))=0, and if in addition {A(f,)} — 4" then
lim, ., d(A(g,), A®)=0 because lim, , , d(A(f;), 4°)=0.

Remark. If there is a uniform Lipschitz constant for S Cla, b1, it is
easy to show using (3.20) below that if w is a minus limit extremal for
{ =S with [ /=1, Bf, =0, and f,(x) < | —# in some neighborhood N
of w with 0 <# < 1, and thus there are no + extremals for f, in N, then any
sequence {g.} in Cla,b] with |lg,— /] =4,10 can not have plus
extremals {w,} in N for large k. This follows because from (3.20),
|Bg,— g, =1 and since there is by assumption a uniform Lipschitz
constant |Bf, — Bg,: <A ||f, — g, which implies {|Bg,|} — 0 and thus
lgell = 1. If w, is a plus extremal for g, then {g.(w,)} —>1 which
contradicts [ | N<1--5. Hence the existence of a uniform Lipschitz
constant in some cases requires that

kli{n do{A(f), Alg,))=0.

If, on the other hand, sup,.y fi(x)=1—n,, n,>0, and lim, _ , 5, =0,
then those points x, € N, where f,(x,)=1—4, can be used to construct
a sequence {g,} such that ||f, — g, -0 and the other condition of
Definition 5 is violated.

Since the pattern for uniform Lipschitz constants resembies and makes
use of that for uniform strong unicity constants we state those results here.
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THEOREM 2[27]. A set S< Cla, b]\M does not have a uniform strong
unicity constant if and only if S contains a sequence | f;. } with {E(f,)} — E°
where one of the following holds:

(i) |EY<n—1
(ii) |E% =n and EY contains a point which is not a + limit extremal
of L1i).
(i) |E"|=n+1 and E° does not contain a limit alternation set for
any subsequence of { [, }.

In [2, Theorems 5 and 6], it was shown that in the two cases when a
sequence { f,} with {E(f,)} - E°, satisfies E” contains at least n + limit
extremals, or when |[E% >n+1 and E° contains a limit alternation set,
then {f,} has a uniform strong unicity constant. Hence by Theorem |
there would also be a uniform Lipschitz constant.

We should observe finally that in order for S C[a,b] to have a
uniform Lipschitz constant it is necessary and sufficient that every sequence
from S has a uniform Lipschitz constant.

3. RESULTS

First we state and prove Theorems 3, 5, and 6, the main theorems of the
paper. Next in Section 4 we give Example 1 that illustrates the strange
behavior of Lipschitz constants when there is an almost alternation set.
shows how sensitive Lipschitz constants are to small changes in extreme
point sets, and illustrates what happens in Theorems 5 and 6 in case there
is an almost alternation set.

THEOREM 3. If S={f.} is a sequence in CLa, bI\M, {E(f,))} - E° and
[EYY<n—1,n22, then S does not have a uniform Lipschitz constant.

Proof. Let E°={a,,..,a,}, 1 <L<n-1, be the limit of {E(f)}/_,.
Let sep{a,} =9 so that |a,—a,| =0 for i# j. We can assume without loss
of generality that for each &, ||/, || =1 and B(f,)=0. Define

0,,={xela bl |x—a,|<l/mforsomel=1,., L}

"

for 1/m<4/4. Then O, is a union of L disjoint open (in [4, ]) intervals
with E'=0,,. Also for k large enough, k>k(m), E(f.)=0,,. Since
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E(f) =0, I/l < 1. Hence let || fi | o, =1 —d,, 0, >0. Then there exists
a polynomial p, € M such that

(i) plu)=0. i=1...1L
(11) [ pill =0, (3.1)
(1i1) p, has no other zcros.
Let V,=1ixela,b]|x—u| <lim+0d/4 for some /=1,.., L} Thus V,

consists of disjoint, open (in [«, ]) intervals and O, < V.. Define w,(x)
on 0, Ul by

. A‘ — * 7’)’ 3.2
it {mw, it veo,. 2

Then on O, u V¢, w, satisfies
() = () < Eplvl (3.3)

By the Tietze Extension Theorem, w, can be extended to all of [a, ] such
that (calling the extended function i (x))w,{(x) satisfies (3.3) on all of
[«.b] and for any xe [a, b]

) <l c=iPo,, (3.4)

Now define g, (x)eC[w, h] to be g(x)=f(x)+w,(x). First we have
N —fclb=1lwil =pillo,- Then it is shown that B(g,)= p, follows from
(3.1)-(2.4). We have
lgx— pils o =l ‘
<o, Pl
=1
Also
12— pell Op = Nl O, 1,
and if xe O V!

[(ge — P < el + [0 — pe )< L

Finally if v,e E(f,)<O,,. then since w,=p, on O,. (g~ pNx,)=
Jfilx, )= 1 alternately at at least n+ 1 points. Thus Blg,)=p; and
&~ pel = 1. Now

‘13(.f)(v)*B(gA»)\‘: sl (3.5)
1 fi— &l Ipllo,
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By the Mean Value Theorem, if ve O,,.
Pl X) = pu(x) = pilay= pin)x —a;) (3.6)
for some # and /, and Markoff’s inequality implies
| pill < (=1 1 pli. (3.7)
Thus from (3.6) and (3.7) for some /=1, .., L

P <=1 I py | [y —a
<=1 pil/m. (3.8)

Hence

Pl S I pell _ m
I Ps HO,,,. ~ (n—1 ) Ipill/m (n—1)

- (3.9)

By (3.5) and (3.9) then /i(f;)=m/(n—1)". Since this holds for any
sufficiently large m, it follows that

sup{A(f)ihk=1,.)=x

and the proof is complete.

The following Lemma shows that the existence of a uniform Lipschitz
constant for a bounded set S< C[a, b] depends on the behavior of
functions g € C[a, b] which are close to functions fe S.

LemMma 4. If lim, ., A(fi)=x, and if {f.} is bounded, then there
exists a sequence of functions | g} from Cla, b] such that

(i) klim g, =71 l=0
(i) lim ”B(/k,)iB(g”H -
koo 17— gxl

Proof. Since lim, _ , A(f,)= ., there exists by the definition of 4 a
sequence of functions {g,} such that

Bf. — Bg,
lim I B/, gAH:%

ke L= gl

Then (1) follows because if there were to exist an ¢>0 such that
|/ — gl >¢ for all k, then
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| B(f.)— Blg )l =11B(gy— B
<2ig,— B
S2lge— il + 11— BUOD

and hence

|B(fi)— B(g)l 1i /i — B
[ — g A
S2+2:0f - Bk

N

which is bounded.

Theorems 3 and 6 consider situations when [E’| <n— 1 or |EY 2n+1,
respectively. Theorem 5 is concerned, essentially, with the case |E’| = n.

THEOREM 5. Let S=1{f.} be a sequence in Cla,b]\M, n=22 and
{E(fi)} » E"

(@) IfILE' (S)=n
then S has a uniform Lipschitz constant.
(b)  Suppose |E°|=nand [A(f,)} — 4"
(i) If EX(A"ULE" )# & then there is no uniform
Lipschitz constant.
(it) If |A°| =n, there exists no almost alternation set,
and S is bounded, then there is a uniform Lipschitz
constant. (3.10)

Proof. Part (a) follows immediately from {2, Theorem 5] and
Theorem 1. First we prove (b)(1) in a manner similar to the proof of
Theorem 3.

Let E°={a,,..a,}, where a,e EN(A°OLE" )so A°C{a,,...a, ,}.
Also let d =sep{a,}. Let

"

O,={xelabl|lx—aq|<limiforsomel/=1, .. n—1} (311}
where 1/m < 0/4, and
U,={xela bl ix—a,| <l/m;. (3.12)

For k sufficiently large, E(f,)<=0,, v U,, and since a,¢ LE' |, we can
assume (without loss of generality) «,¢ LE  so there exists a
neighborhood V of a, and ¢, >0 for k sufficiently large such that if xe V,
then

Silx) = —1+cp (3.13)
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Assume m is so large that U,, < V. There exists a d, >0 such that

[ fillcope o =1 =0k, (3.14)
Let
V,=1{xela bl |x—a,|<l/m+d/dforsome/=1,..n—1].
Thus O,,<V,, and U, < V!, . Define p,{x)e M by
(1) pla)=0.i=1,.n—1
(i1) pela,) >0
(iif) Ipill =min{ceg, 04},

where we can assume p, | U,,> 0. Define w, e C[a, b] by

wilv) =

so that on O, L V¢, w, satisfies

”r

[welx) = pe( )] < pplx)] (3.15)

and then extend w,(x) to all of [a, o] so that (3.15) holds on all of [a, b]
and if xe[a, b].

[w (X)) < H“'A—H(’),,,u = Py H(‘),,,~ (3.16)

Now let g, = f, +w,. As in Theorem 3, considering | g, — p, /| in turn on
0,,. L,,, o Ve, (U,uV,) and at points x,€ A(f,)=O,, we obtain

o n?

B(g,)= p,. This leads as before to

sup £(f, )=,
and the proof of (b)(i) is completed.

To prove (b)(ii) assume to the contrary that some sequence {f,} of
functions from S satisfies {2(f;)} T oo. Since { f, } has no almost alternation
set and S is bounded, {f,/Il/.!I} will have no almost alternation set. Thus,
without loss of generality we assume | f,| =1 and Bf, =0 for each k. Let
sep A” = and let ¢ satisfy 0 <& <#/8. By Lemma 4 let {g,} be a sequence
of functions from C[a, h] with

g~ fill=0,10 (3.17)
and
|Bfy — Bg,1l/0, T o

64)-62 1-3
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Since lim,  , d(A(f,). A®)=0, there is a constant K such that k> K
implies

dA(f) Ay < e (3.18)

By the definition of an almost alternation set there is some constant M
such that for all £,

do(A(gi), AU < M | fi— gl (3.19)
We know that
1 -0, <||Bg, — g <146, (3.20)
since
1Bgi — gl < gl <llga = il + 1/l < T +0,
and

I —||Bg, — gill = /i | —[1Bgy — gxl
< fy — Byl — 1 Bg — g,
< fo— g4l

5.

N

Let w, denote one of the n points in A". By (3.18) there is a point
x(fi)e A(f,) with

Ix{ /) —w,| <e (3.21)

Assume that x(f ) e £ (fy), lim, ., x(f,)=w,, and w,eLE (|fi})
(The case x{(f)eE*(f,) is similar.) By (3.19) there is a point
x(gi)e A(g,) such that x(g,)e £ (g:) and

(x(gx) = XU/ < Moy, (3.22)

where we assume without loss of generality that Md, < /8.
From (3.20) follows

(o8]
ro
(U]

=& (X)) + Bgrx(f)) < T+ 0y (
and hence from (3.17) follows

B Ax(fiN <140, + golx(fi))
< 20,. (3.24)
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Also from (3.20) follows

gi(x(gy)) — Bg(x(ge)) = — llge — Bl < — 1+ 0,
and hence from (3.17) follows

Bgi(x(g)) = =0, + 1+ gplx(gs))
> —25,. {3.25)
Moreover since |Bg,| <2 |g:] <3 (assuming &, <3), by Markoff’s
inequality and (3.22) for some z€ [a, b],

— Bg(x(fi)) + Bgi(x(g4)) < | Bgu(x(fi)) — Bgi(x(g))l
<|(Bgo) (2 1x(fi) — (&)l
<3(n—1)° MJ,,

and hence by (3.24)
Bg (x(g ) < 0,2+ 3M(n—1)). {3.26)

Hence by (3.25) and (3.26) there is a constant M, independent of k, such
that

[Bg(x(g NI <M, 9,. (3.27)

Since Md, +e<n/4, there is one such point x(g,) satisfying (3.27)
corresponding to each one of the points in 4% denote these points by
wioi=1,.,n

Then by the Lagrange form of the interpolating polynomial Bg,. for
each ve [a, b],

2 ! n

Beu0)l=| Y BeuGw) TI (v—w)) T 0w, w)

i=1 j=1.7%1 [ N )

<Y M5 (b—a) /(n2)

i=1

< M2 (Sk
for some constant M, independent of k. Thus

18— Bl Bl _
/e — gl 0y i}

This contradiction completes the proof.
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THEOREM 6. Let S=1{f.} be a sequence in Cla, b]\M with
LE(f)) ~» E”.
(@) If E" contains a limit alternation set. then S has a uniform
Lipschitz constant.
(by If E° with |E® = n+1 is not a linit alternation set. then there
always exists an almost alternation set.

Proof. Part {a) follows from [2, Theorem 6] and Theorem 1. To prove
part (b) as usual we can assume that [/, | =1 and Bf, =0 for all k. We
claim that for some subsequence | f, | of § and some choice of {A(f, )} we
have {A(f, )} — B° with |B"| <|E°[. If not, choosing {A(f,)} arbitrarily
and choosing any convergent subsequence {A(f;)} we would have
{A(f;)} = some C° with |CY[ = |E%. so [CY =|E" =n+1and C'=E";
but then [A(f,)} —E" (else for some other subsequence [A(f,)] of
{A(f,)) we would have d(A(f,), E”)>some ¢ >0, and some subsequence
of {A(f,)} would converge to some B with necessarily |B"| < [E|). so £
would itsell be a limit alternation set, contrary to assumption. We now
show that [A(f,)} — B with |B°| < |E"| implies that therc is an almost
alternation set for S. Let B = le,, e, } and suppose ¢, , , € £ B", where
we assume that for some / we have ¢, <¢, ., <e,, . (The cases ¢ ,, <
min{e,,...e,} and ¢, ,>max{e ..., ¢, | are similar.) Going to further
subsequences if nccessary, for all i we find ¢!, ¢!*" adjacent points in

A(f) e e E(fi) with e s e e = e, el —e 0 without loss
of generality we can also assume f, .(e}‘ '):_/'A,,(u'f,',): 1 and
fiet)= —1 for all i. Now let g, = f, for all k&, with A(g,) taken to be

I+l
A(f,). except that for all / sufficiently large to ensure e <e!™!| < el

replace ¢\*' by ¢/, to form A(g,). For all such / we will have

do(A(g, ), Alfi D) =" —etf' >0, v1oldtmg Definition 5.

The following theorem summarizes the results in the case of a bounded
set of functions with no almost alternation sets.

THEOREM 7. Let S Cla, b1 M be bounded and assume no sequence in
S has an almost alternation set. Then S does not have a uniform Lipvchii:
constant if and only if there is a sequence | f; } =S such that 1E(f)} - E°
and |E°| <n—1.

Proof. 1f there is a sequence {f,} =S with {E(f,)] = E" and |E’| <
n—1, then by Theorem 3, {f,} (and thus S) does not have a uniform
Lipschitz constant. If on the other hand S does not have a uniform
Lipschitz constant, then there is a sequence ! /! = S with A(f,) — x: by
going to a subsequence if necessary we can assume | E(f,)! - some E" and
{A(fi)} »some A° Then |E°l=n+1 is impossible by Theorcm 6.
[E°| =n and [A"] = n is impossible by Theorem 5(b)(ii). and 1E"| =n and
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|4°| < n is impossible since by the proof of Theorem 6(b) that would imply
that there is an almost alternation set. Thus |E"| <n— 1.

The degeneracy of 4" in Theorem 5(b)(i) where |A’|<n—1<|E"|=n
guaranteed the nonexistence of a uniform Lipschitz constant, at least if
E"(A"ULE™ )# ¢&. However, when |E"| = n+ 1 then the degeneracy of
some A ie., |A° <n—1, may occur even when there is a uniform
Lipschitz constant. See Example 1 below,

4. AN EXAMPLE

The following Example shows that in Theorem 5(b)(ii), if there is an
almost alternation set then sometimes there is and sometimes there is not
a uniform Lipschitz constant. Also in Theorem 6 part (b) the Example
shows that in this case again there may or may not be a uniform Lipschitz
constant because of the existence of the almost alternation set. Further-
more, by part (ii) of Theorem 2, the sequence of functions does not have
a uniform strong unicity constant even when there is a uniform Lipschitz
constant,

ExampLE 1. Let M =1/I,, the algebraic polynomials of degree one or
less on [ —1, 1] and let f,, (x)e C[ — L. 1] be defined on knots by

- it v— —1,1
_ | if x=-1+4+a«a
o (X) = -1+ if v=—-1+¢

- p  if x=0

and be piecewise linear between these knots. It is assumed that 0 <o <c¢ <
L,0g<p<1, and 0<y < 1. Letting « and 7 tend to O through a sequence
of values let S={f,.}. Then S has an almost alternation set. If f/y is
bounded, § has a uniform Lipschitz constant, whereas otherwise there
might be no uniform Lipschitz constant. In this example, E®=!—1, 1},
1 is not a + limit extremal and |4°| = |E"| = n. Denote f,;.. by f.

To see that there is an almost alternation set, let g(x) be defined to be
equal to f on the knots except g(—1+c¢)= —1. Then B(g)=0, A(f)=
F—1, —1+42,1}, we can take A(g)={—1. =1+ —1l+c}, [[f—gl="
and

do(A(f), A(g)) 2—¢

f-gl

which does not remain bounded as 7 — 0.
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Now for any values of «, f§, 7. ¢ we derive some inequalities arising from
the values of another function g at the knots. Let || f— gl = 9. Then (3.20)
shows that

1 -0<|B(g)- gl <1+0. (4.1)
Using (4.1) we obtain

Bg(—1)<20
Bg(—1+4+x)> -2
Bg(—14+¢)<20+7 (4.2)
Bg(0)= —26—f8
Ba(1)<20.

Now suppose (by way of contradiction) that fi/y is bounded, but the
sequence of functions f does not have a uniform Lipschitz constant; going
to a subsequence if necessary we can assume A(f) — oc. Then by Lemma 4
we can assume 6 — 0 and | Bg|/é — . Let m be the slope of Bg; we next
compute bounds for |m| and j| Bg|. Since the graph of Bg is a straight line,
it follows from Bg(—1)<25 and Bg(1)<25 that Bg(x)<24, for all
xe[—1.1] From (4.2} we also have m = (Bg(0) - Bg(— 1)/(0—(—t))=
—p—20—-20=—p—46, so Bg(l)=Bg(O)+(1-0)ym= 20—~
40 = =2 —60. Further, m=(Bg(1)— Bg(—1 +a))/(1 —{ -1 +2)) < (20—
(—=20N/(2—a)=40/(2—a), so Bg(—1)=Bg(—1+0)+(—1—(—14+2))m
> —20—400/(2—a). Thus since x<1 we have |m|<max(ff+ 40,
40/(2—2a)) = f+40, and [Bg| < max(25. 28+ 60, 20 + 40x/(2 - x)) =
28460, 1e..

Iml < f+40
| Bgll <2fi + 60.

(4.3)

Now -0, d -0, and y — 0, so we can assume |m| and ||Bg|| are as small
as we like, so we can assume || is smaller than the absolute values of the
slopes of the four line segments comprising f, and if the zeroes of f are
denoted by -, z», =4, z, then we can assume the minus extremals of ¢ lie
in [—1,z,)u(z:. 23)u(zs, 1], while the plus extremals of g lie in
(zy,25) U=y, 24). Now we claim that if ¢ has (respectively) a minus
extremal in [—1,z,), a plus extremal in (z,,z,), a minus extremal in
(22, z3), a plus extremal i (z,.z,), or minus extremal in (z,, 1], then
(respectively}
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—20<B(g)(-1)
B(g)(—1+2)<20
—254+ < Blg)~1+¢) (4.4)
B(g)(0) <20-f
—-20< B(g)(1).

To prove the first inequality (the others are similar), note that if
x*¥e [ —1, ;) satisfies g(x*)— Bg(x*)= — ||g — Bg|l, then using (4.1) we
have f(—1)— Bg(— 1)< f(x¥) Bgr( ) (since |m| < the slope of the first
segment of f) = g(x*)— Bg(x*)— g(x*)+ f(x¥)< —(1 =0)+ 0= —1+26,
so Bg(—1)=2 f(—1)+1—256= —23. Now there are five possible configura-
tions for the points of an alternant for g. In the two cases which include
minus extremals in both [—1.z,) and [z,,1] we get from (4.2) and
(4.4) that ||Bgll <20, so [|Bg—Bf|/If— gl <26/0=2. In the remaining
three cases there will be a minus extremal in (z,, z3), and we compute
m=(Bg(—1+c¢c)—Bg(—~1})e=(=20+7y—2a)c=(y—40)/c and m=
(Bg(1)— Bg(—1+0))(2— ) < (20— (—25+3))/(2—¢) = (45 —3)/(2 — ).
50 (y—43)e< — (7 —46)/(2—¢), s0 (7 —40)(1/c+ 1/(2—¢)) <0, so 7 < 4.
[t then follows from (4.3) that |Bgll <2(f/y)y +60<8(B/y)0+66, so
|Bg — Bf |/l /— gl <8(f/y)+ 6, so this inequality holds in all cases,
contradicting the assumption | Bgl/0 — > and completing the proof that S
has a uniform Lipschitz constant.

For an unbounded sequence of Lipschitz constants define piecewise
linear functions f, and g, by

—1, x=—1,1
1—a’. x=—1+4+uz
e T T g
1 —x x=0

and for £, let ('—20(, y=27 and =

Then Bg,(x)= —a(x+1), |/, — g, = 3«* and
CBg.ll _3_,y 45 50
Ifi=gd 3a '

Observe here that /7 does not remain bounded as 7 — 0.

Remarks. (1) When f=1 and ¢=2x the previous functions f are
almost the functions fin [7, Example 2.

(2) The example can also be modified for the situation |E®| =n+ 1.
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The modified example just changes f on [3, I ] making it identically — I
there. As before when fi/y is bounded there is 4 uniform Lipschitz constant;
there is an example where /7 is not bounded and there is no uniform
Lipschitz constant.

ro
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