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INTRODUCTION

Let M denote an n-dimensional Haar subspace of C[a, h]. It is well
known [6] that in Chebyshev approximation, any IE C[a, h] has a
strongly unique best approximation BCf) from M, i.e. there exists a
number')' > 0 such that

III-mil ~ III-BUlll +;' IIBUl-mi:

for all mE M, where ;' is taken to be the largest such number. Here
;' = ')'U; M, n l.

There have been many results (see, e.g., [2, 5, 8]l on the existence of
uniform strong unicity constants which are independent of n, /: or 10.1; we
are here concerned with uniformity with respect to f

DEFINITION 1. A set S ~ C[a, h] has a uniform strong unicity constant
if there exists a number r> 0 such that for all I EO S and all m EO M,

III-mil ~ 11/- BUll1 + r IIBUl-mll·
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E. W. Cheney [3J proved that whenever a function has a strongly
unique best approximate. then the best approximation operator B satisfies
a Lipschitz condition at I i.e.. there exists a number i,(fl > 0 such that

B(f)-B(g)il~iU) --gil

for all g E C[a. h], where i.(f) is taken to be the smallest such number. In
fact. the proof shows that i. ~ 2/;'.

DEFINITION 2. A set Ss C[a. hJ has a uniform Lipschitz constant if
there exists a number ,1. such that for all f E S and all g E C[a. h],

IB(f)-B(g)1 ~/11If-gll·

From the proof of E. W. Cheney's result in [3J it follows that:

THEOREM I (Cheney). If S c;: C[ a. hJ has a lInifimn slrong lInicily con­
slanl r. Ihen S has a lInifimn Lipschil: conslanl A and one can lake ,1 ~ 2/r.

For a set Sc;: C[a. h], the results in [2J characterize the existence of a
uniform strong unicity constant in terms of limit extreme point sets. When­
ever there is a uniform strong unicity constant. there is by Theorem 1 a
uniform Lipschitz constant. This paper considers the situation when there
is not a uniform strong unicity constant. In particular, Theorem 7 com­
pletely determines for a bounded set of functions which have no "almost
alternation sets" (see Definition 5) whether or not there is a uniform
Lipschitz constant.

It is known [1 J that when lvf is not necessarily a Haar set, if B(·)

satisfies a Lipschitz condition at f and Bcn is unique. then Bcn is strongly
unique. In this paper's circumstances, with M a Haar set, Bcn will be
unique, and it is surprising that. as seen in Example I, if .s' has a uniform
Lipschitz constant then it need not have a uniform strong unicity constant.
This shows moreover. that there can be no inequality like ~ i. for some
c > 0 corresponding to the inequality i. ~ 2/;' of E. W. Cheney. Theorem
5(b )(ii). combined with the results in [2 J, gives general conditions when
there is no uniform strong unicity constant. but there is a uniform Lipschitz
constant. In case dim M = I. it is known [5J that there is a uniform strong
unicity constant and hence a uniform Lipschitz constant. Hence
throughout the paper it is assumed that 11 ~ 2.

A major difficulty in the study of (uniform l Lipschitz constants is the
lack of characterizations for Lipschitz constants similar to the characteriza­
tions available for strong unicity constants.
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2. DEFINITIONS AND NOTA TlON
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Henceforth M = fin I' the algebraic polynomials of degree less than or
equal to n - 1. The best approximate from M to a given I' E C[a, h] is
denoted by Bt or B(/). The extreme point set for I is

E(/l = {x: 1(/- Bfl(x)1 = I!f - Btl!:

and the positive (resp. negative) points E' en (resp. E (/)) are those
points XE Een where (/- Bt)(x) = III- BII (resp. (/- Bt)(x) =

-III-Btll). Say the sign ofa point in E'efl or E (fl is + or-,
respectively. Let A(f) denote an alternation set of n + I points for I For
a finite set D denote its separation by sep D = min: Ix - .1'1 : .Y, y E [)}. The
concept of a limit extreme point was important in studying uniform strong
unicity constants in [2].

DEFINITIO:'-/ 3. Let S=: I~ J be a sequence of functions in C[a, h]. A
point x E [a, h] is called a + limit eytrema! of S if for each k there exists
x/ E E + (f~) such that lim k • , x / = x. A - limit extrema! is defined
similarly. A point x E [a, h] is a ± limit extrema! of 5 if for each k

there exists x: E E' (f~) and X k E E (f~) such that lim k ., x: =
limk . f X k = x. Denote the three sets of these limit extremals by LE + (S),
LE (S), and LE + (5), respectively.

In general reference to the convergence of subsets of [a, h] refers to con­
vergence of sets in the compact metric space consisting of the nonempty.
closed subsets of [a, h] with the Hausdorff metric. For subsets A. Be;
[a, h] the Hausdorff metric d(A. B) is defined by

d(A, B) = max {max min la - hi, max min la - hi j.
d c A h 0;-- H hEn (/~•. f

DEFINITION 4. Let U~) <;: C[a, hJ satisfy : E(f~) : ~ EO. Then e is
called a limit extreme point set. If {AUk); ~Ao for some choice of A(f~).

call AO a limit alternation set if IAol = n + 1.

In addition to the above ideas in [2], we also use the idea of an almost
alternation set. Example 2 in [7J can be interpreted as an example of a
family of functions 5 which has an almost alternation set. In that example,
extended to [ - 1, 1J and normalized so that B/~ = 0 and :If~ II = 1,: f~} is
a sequence of functions such that f~( lI'k) > -I for some lI' k E [a, hJ and
limk. ~. f~( \I'd = -I so that lI' k is almost an alternation point for fk' First
let the "ordered distance" betwccn altcrnation scts A(/)= {Xi};" i and
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A(g)={L};'~i be denoted by do(AU).A(g))=max l , "Ix'-)'il when
x1EE+(f)andy1EE+(g),orwhenx1EE Ujand)'IEE (g); otherwise
do(AU), A(gj) is set equal to h--a.

Remark. In fact, if we say that two alternation sets AU) and A(g) are
equal if both x, = .1'" i = 1..... n + 1 and they alternate the same way, i.e.,
x1EE+C/limplies)'IEE+(g)andx1EE UlimpliesY1EE (g),thenthe
ordered distance is a distance function on the set of alternation sets.
Furthermore. this ordered distance is always at least as large as the
Hausdorff distance.

DEFINITION S. A sequence S = U,): I does not have an almost alter­

nation set if whenever a sequence (,f;', U~ I satisfies lim, _., Ii g, - j~ = 0
there is a constant M such that for all k = 1.....

where A(j~) and A(gd are any alternation sets for/~ and g" respectively.

It follows from the definition that when there is no almost alternation
set and {g,} is a sequence such that lim, . , Ilj~ - g, II = 0, then
lim'~f.do(A(jd,A(gd)=O, and if in addition {A(j~)j-->Ao then
lim,~ f d(A(g,), AO)=O because lim, ., d(A(j~), AOj=O.

Remark. If there is a uniform Lipschitz constant for S ~ C[a, h], it is
easy to show using (3.20) below that if lI' is a minus limit extremal for
Ud ~ S with II = 1, B/~ = 0, and/~(x) ~ I -I] in some neighborhood N
of H' with 0 < 'I < 1, and thus there are no + extremals for/~ in N, then any
sequence {gd in C[a,h] with I!g,-j~ =bdO can not have plus
extremals {I\',} in N for large k. This follows because from (3.20).
IIBg, - g, II --> I and since there is by assumption a uniform Lipschitz
constant IIBf~-Bg,~;/ -g,1I which implies: Bg,II}-->O and thus
II gd --> 1. If 11', is a plus extremal for g, then (gd lid) --> 1 which
contradicts fiN ~ 1 -- 'I. Hence the existence of a uniform Lipschitz
constant in some cases requires that

lim do( A (j~ l. A (gd )= O.
k.f

If, on the other hand, sup\cvj~(x)= l-I/k.II,>O, and lim,~ f. 11,=0.
then those points x, E N, where j~(x,) = I - 'I, can be used to construct
a sequence {g,} such that Ilj~ - g, II --> 0 and the other condition of
Definition 5 is violated.

Since the pattern for uniform Lipschitz constants resembles and makes
use of that for uniform strong unicity constants we state those results here.
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THEOREM 2[2]. A set S~ C[a, hJ\M does not have a uniform strong
unicity constant if and only if S contains a sequence U~} with {E(f~): -4 EO
where one oj' the following holds:

IEOI :(n-I

IEol = n and EO contains a [Joint which is /101 a ± limit extremal

(i)

(ii)
oj' {j~ }.

(iii) IEol ?n+ I and EO does not
am' suhsequence oj' {j~ }.

contain a limit alternation set for

In [2, Theorems 5 and 6], it was shown that in the two cases. when a
sequence Ud with {E(f~)} -4 EO, satisfies EO contains at least n ± limit
extremals, or when IEol? n + I and EO contains a limit alternation set,
then U~} has a uniform strong unicity constant. Hence by Theorem I
there would also be a uniform Lipschitz constant.

We should observe finally that in order for S~C[a,h] to have a
uniform Lipschitz constant it is necessary and sufficient that every sequence
from S has a uniform Lipschitz constant.

3. RESCLTS

First we state and prove Theorems 3, 5, and 6, the main theorems of the
paper. Next in Section 4 we give Example I that illustrates the strange
behavior of Lipschitz constants when there is an almost alternation set,
shows how sensitive Lipschitz constants are to small changes in extreme
point sets, and illustrates what happens in Theorems 5 and 6 in case there
is an almost alternation set.

THEOREM 3. If S = {j~} is a sequence in C[a, h] \M, {E(f~))} -~ EO and
IEOI :( n - I, n ? 2, then S does nol have a uniform Lipschil:: constant.

Proof: Let EO = {ai, .", G L }, 1:( L:( n- I, be the limit of {E(f~)}:~ I'

Let sep{ a,} = <5 so that IG, - a/I? <5 for i =1= j. We can assume without loss
of generality that for each k, Ilj~ II = 1 and B(f~) = O. Define

011/= {XE [a, h]: Ix-a,1 < I/m for some 1= I, ..., L]

for 11m < <5/4. Then 011/ is a union of L disjoint open (in [a, h]) intervals
with EOcOIl/' Also for k large enough, k>k(m), E(f~)~OIl/' Since
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EUk) sO,,,, II!~ II () < 1. Hence let II!~ 11o = I -- (\' () k > O. Then there exists
a polynomial Pk E;'W such that . n

(i)

(ii)

(iii)

Pk (u I) = O. 1= 1..... L

! Pk II = ()i

f! k has no other zeros.

(3.1 )

Let V",={xE[a,h]:lx-u/I<I/I1I+():4. for some 1=1, ... ,L;. Thus V",
consists of disjoint, open (in [u, h]) intervals and 0 ,,, S V",. Define \I'dx)

on 0", u V;" by

Then on D/I l u V:", Irk satisfies

if .r E V;"
if XEO",.

(3.2)

(3.3)

By the Tietze Extension Theorem, \I'k can be extended to all of [a, h] such
that (calling the extended function \I'Jv)) H'k( x) satisfies (3.3) on all of
[u, h] and for any x E [a, h]

(3.4 )

Now define gdX)EC[u,hJ to be gd.\)=j~(.\)+\I·d.\). First we have

II g k - j~ II = 111I'k = II Pk II 0", Then it is shown that B( g k! = Pk follows from
(3.1 )-(2.4). We have

IIRk - pd, '" = Ij~- Pk II,;"

~ On + II Pk il
:= 1.

Also

and if .\ EO;" V:",

Finally if x/EEU~)sO"" then since \l'k=Pk on 0"" (gk-Pk!(.\/)=
j~(.v/) = ± I alternately at at least 11 + I points. Thus BU~k) = Pk and
,IRk - pd = 1. Now

I,BUk) - B(gk!1

Ilj~ - gk II
liPk I

II Pk 110m

(3.5 )
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By the Mean Value Theorem. if x EO""

for some '1 and I, and Markoff's inequality implies

Thus from (3.6) and (3.7) for some 1= I, .. " L

Ipdx)1 ~ (n - 1)2 lip, Ix - all

~ (n - 1)2 lip, /m.

Hence

29

(3.6 )

(3.7 )

(3.8 )

(3.9)

By (3.5) and (3.9) then i.Ud~m/(I1-lf Since this holds for any
sufficiently large m, it follows that

sup (iU~): k = 1, ... } = x

and the proof is complete.

The following Lemma shows that the existence of a uniform Lipschitz
constant for a bounded set S c;; C[G, hJ depends on the behavior of
functions g E C[G, hJ which are close to functions f E S.

LEMMA 4. If' lim,~, ).U~) = x, and if' {f~} is hounded, then there
exists a sequence of'f11llctions [g,} from C[a, hJ such that

(i)

(ii)

lim II g, -f;-II = 0
k ----+ J

IIBUd - B(g, )[1
lim =X.

, > Y. Ilf>' g, II

Prool Since lim, ~ " i.U~) =x, there exists by the definition of i. a
sequence of functions {g,} such that

Then (i) follows because if there were to exist an I: > 0 such that
Ilf~ - g, > f; for all k, then
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and hence
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IIBU~) - B(gdll = ilB(Rk - BUk llII

:s2IiRk-BU~)1

:S 2( I:Rk--lk I: + il/k - BU~ )11)

II B(:~) - B( Rd II :s 2+ 2 II/~ -- BUd II
Uk-Rkll liRk-Ikll

:s 2+ 2 Ilk - BU~)

which is bounded.

Theorems 3 and 6 consider situations when iEIII :S n - 1 or IEOI ? n + 1,
respectively. Theorem 5 is concerned, essentially, with the case IEol = n.

THEOREM 5. Let S = U~: he a sequence in C[a, h r.M, n? 2 and
{EU~)} -> EO.

(a) IflLE t (S)I?n
then S has a uniform Lipschit:: constant.

(b) Suppose IEol=nand lAU~)j->Ao.

(i) If EO\ (Ao u LE + ) # 0 then there is no uniform
Lipschit:: constant.

(ii) If IA °1 = n, there exists no almost alternation set,
and S is hounded, then there is a unilorm Lipschit::
('onstant. (3.10)

Proof: Part (a) follows immediately from [2, Theorem 5] and
Theorem 1. First we prove (b Hi) in a manner similar to the proof of
Theorem 3.

LetEO= {al, ... ,an }, whereanEEll\(AouLE+ )soAOs;{al, .. ·,(1n I}'
Also let 6 = sept a/}. Let

Om = {x E [(1, h]: Ix - a{ I < 11m for some I = I. .... 1/ - 1 ), (3.11 J

where I/m < 614, and

UIl/= {XE [a, h]: Ix-ani < 11m}. (3.12)

For k sufficiently large, EU~) S; Om U Um and since an $ LE t we can
assume (without loss of generality) an $ LE so there exists a
neighborhood V of an and Ck > 0 for k sufficiently large such that if x E V,
then

(3.13 )
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Assume m is so large that UIII S; V There exists a <5, > 0 such that

Let

v'" =( X EO [a, h]: Ix - all < 11m + <5/4 for some I = I, ..., n - 1].

31

(3.14)

(i)

(ii)

(iii)

pda I) = 0, i = 1, ... , n - 1

p,(all»O

lip, II = mint c" <5d,

where we can assume p, I UIII > O. Define II', EO C[a, h] by

XEO (JII/

XEO V;II

so that on (jill U V;;I' II', satisfies

(3.15)

and then extend H',(X) to all of [a,h] so that (3.15) holds on all of [a,h]
and if x EO [a, h],

(3,16)

Now let g, = f~ + )1'" As in Theorem 3, considering II g, - pd in turn on
011/' UI/I, O;II\V;", (Ul/lu V"tl' and at points xIEOAU~)s;OI/l we obtain
B( g, ) = P" This leads as before to

sup i,U~)=x,

and the proof of (b)(i) is completed,

To prove (b)(ii) assume to the contrary that some sequence Ud of
functions from S satisfies {},U~)} r 00. Since U~} has no almost alternation
set and S is bounded, Udllf, II} will have no almost alternation set. Thus,
without loss of generality we assume Ilf~ II = 1 and Bf~ = 0 for each k. Let
sep A 0 = ~I and let I: satisfy 0 < /: < /1/8. By Lemma 4 let [g,} be a sequence
of functions from C[a, h] with

(3.17)

and
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Since lim k • f d( A (j~), A 0) = 0, there is a constant K such that k > K
implies

d(A(f~), ,411)<1:. (3.181

By the definition of an almost alternation set there is some constant M
such that for all k,

(3.\9 )

We know that

(3.20)

sInce

and

I -IIEgk- gk II = Ilfd -IIEgk- gk Ii

:S; 1If~ - Bgk II - II Bgk - gk II

:S;llf~-gkll

Let \l'k denote one of the 11 points In A 0. By (3.\ 8) there is a point
XUk) E A(j~) with

Ix(j~)-\l'kl <I:. (3.2\ )

Assume that x(j~)E E (j~), lim k • f x(j~) = H"k' and Ilk E LE ({ f~ ) ).
(The case X(jk)EE+(j~) is similar.) By (3.19) there is a point
X(gdEA(gd such that X(gdEE (gd and

(3.22)

where we assume without loss of generality that Mli k < '1/8.
From (3.20) follows

(3.23)

and hence from (3.17) follows

(3.24 )
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Also from (3.20) follows

gk(x(gd)-Bgk(x(gd)= -llgk-Bgkll,,; -I +6k

and hence from (3.17) follows

33

(3.25)

Moreover since IIBgkli,,;2 :lgkll,,;3 (assuming (\<~), by Markoff's
inequality and (3.22) for some ZE [a, h],

- Bgdx(.f~)) + Bgk(XC~k))"; IBgk(X(.f~)) - Bgk(x(gd)1

,,; I(Bgk)'(Z)llx(.f~)-x(gdl

,,; 3(n - 1)2 M6 b

and hence by (3.24)

(3.26)

Hence by (3.25) and (3.26) there is a constant M l' independent of k, such
that

(3.27)

Since M6k + f. < '1/4, there is one such point x(gd satisfying (3.27)
corresponding to each one of the points in AO; denote these points by
\\'" i= 1, ..., n.

Then by the Lagrange form of the interpolating polynomial Bgk' for
each .\: E [a, h],

IBgk(X)I=lfBgk(II';) n.(X-II)/ n (\\"/-WI)I
[=1 /=1,)#1 1-11=1=1

",,; L M]6 k(h-a)" ]/(1]/2)" 1

i= I

for some constant M 2 independent of k. Thus

This contradiction completes the proof.
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THEOREM 6. Let S=:t~: he a sequence ill Cla,h]\M \lilh

{EU~)} -+ EO

(a) If E" contains (/ limit alternatioll set, Ihell S' has a ulli/i)(}11

Lipsehit:: eonslant.

(b) If Ell wilh IEol;-1I + 1 is fWI a limil allcrllatioll set. Ihell Ihere

always cxisls an almost altcrnation sct.

Proof Part (a) follows from [2, Theorem 6J and Theorem l. To prove
part (b) as usual we can assume that = 1 and Bf~ = 0 for all k. We
claim that for some subsequence: tk,: of S and some choice of {A U~,) } we
have {AU~)] -+BII with IBol <IEol. If not, choosing :AU~)} arbitrarily
and choosing any convergent subsequence [A U;,l} we would have
{AU;,l}-+some C II with ICol~IEIII, so ICol=IE II \=1I+1 and CIl=E li

;

but then [AU~l}-+EII (else for some other subsequence (AU;,)] of
[AU~)} we would have d(AU;,), EO) ~ some I: > O. and some subsequence
of[ AU;,)} would converge to some BOwith necessarily IBO! < IEIII ), so Eli

would itself be a limit alternation set, contrary to assumption. We now
show that {A U~,)} -+ BO with IBill < IElli implies that there is an almost
alternation set for S. Let BO = (e I..... e,: and suppose c, I IE EO BO. where
we assume that for some I we have c/ <: e" I <: C, + I' (The cases e" 1<
min {e l' ... , c,} and C\+ I > max {e I" ',., c,} are similar.) Going to further
subsequences if necessary. for all i we find cik'. e;k:\ adjacent points in
A( f' ) elk,1 E E( f' ') with elk,l -> e elk,1 -+ e Cil,I.--> e . without loss. k, ~ s +- 1 . k! I j, I +- I I+- 1 ~ \ + [ \ t I • C

of generality we can also assume f~.(cjk.I)=t~,(e~k"I)=l and
t~i(e;~'t)= -I for all i. Now let gk=t~ for all k. with A(gd taken to be
A (f~), except that for all i sufficiently large to ensure e;k' < e~~'1 < e;:"1
replace C;k' by e;k~ll to form A(gkJ For all such i we will have
d()(A(gk,)' A(fd)=e~k~ll-ejk.I>O, violating Definition 5.

The following theorem summarizes the results in the case of a bounded
set of functions with no almost alternation sets.

THEOREM 7. Let S~ C[a, hlM he hounded and assufl/e no scqucnce ill
S has an almost alternation set. ThclI S does not have a unifimn Lipschit::
constant if and ollly if thcre is a sequcnce :t~ :~ S such that : E(f~) : -+ E"
and IEIII ~ n- I.

Proof If there is a sequence Uk} ~ S with (EU~)] -+ EO and IE"I ~
n - I, then by Theorem 3, U~} (and thus S) does not have a uniform
Lipschitz constant. If on the other hand S' does not have a uniform
Lipschitz constant, then there is a sequence: t~ }~ S with ;,Uk) -+ x: by
going to a subsequence if necessary we can assume [EU~): -+ some E" and
{AUk)} -> some An Then IEIII ~ n + I is impossible by Theorem 6.
IEol =n and IAIII =n is impossible by Theorem 5(b)(ii), and IE"I =n and
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IAOI < /1 is impossible since by the proof of Theorem 6(b) that would imply
that there is an almost alternation set. Thus IEOI :(: n - 1.

The degeneracy of AO in Theorem 5(b)(i) where IAol :(:/1-1 < lEO] =/1
guaranteed the nonexistence of a uniform Lipschitz constant, at least if
EOjAO u LE + ) # 0. However, when lEO] ~ /1 + 1 then the degeneracy of
some AO. i.e., IAOI :(: n - 1, may occur even when there is a uniform
Lipschitz constant. See Example 1 below.

4. AN EXAMPLE

The following Example shows that in Theorem 5(b)(ii), if there is an
almost alternation set then sometimes there is and sometimes there is not
a uniform Lipschitz constant. Also in Theorem 6 part (b) the Example
shows that in this case again there mayor may not be a uniform Lipschitz
constant because of the existence of the almost alternation set. Further­
more, by part (ii) of Theorem 2, the sequence of functions docs not have
a uniform strong unicity constant even when there is a uniform Lipschitz
constant.

EXAMPLE 1. Let M = Jl], the algebraic polynomials of degree one or
less on [ - 1, 1] and let f~/i ..'( x) E C[ - 1, 1] be defined on knots by

{

-I

f~/h(X)= 11
. - +)'

I -I>

if x- -1, 1

if x = -1 + (l­

if X= -I + c

if x=O

and be piecewise linear between these knots. It is assumed that 0 < (Yo < c:(:

~. 0:(: {3 < 1, and 0 < Or' < 1. Letting el. and )' tend to 0 through a sequence
of values let S = U~.,.]. Then S has an almost alternation set. If Ph' is
bounded, S has a uniform Lipschitz constant, whereas otherwise there
might be no uniform Lipschitz constant. In this example, EO = [ - I, 1},
1 is not a ± limit extremal and IAol = IEol = /1. Denote f~/i..' by f

To see that there is an almost alternation set, let g(x) be defined to be
equal to/on the knots except g( -1 + c) = -1. Then B(g) = 0.. AU) =
: - L - 1 + x, 1}, we can take A (g) = { - 1. - I + x, - I + c), Ilf - gil =~'
and

do(A(f), A(g))

-g'l

which does not remain bounded as j' -7 O.

2-c



36 BARTELT, KAUFMAN, A]\;() SWETITS

Now for any values of a, {J, ;', c we derive some inequalities arising from
the values of another function g at the knots. Let III - gil = 6. Then (3.20)
shows that

Using (4.1) we obtain

Bg( -I) ~ 2()

Bg( - 1 + :x )~ - 2()

Bg( - I + (') ~ 26 + ';'

Bg( 0 )~ - 2() - {3

Bg( I) ~ 2().

(4.1 )

(4.2)

Now suppose (by way of contradiction) that {JI!' is bounded, but the
sequence of functions I does not have a uniform Lipschitz constant; going
to a subsequence if necessary we can assume i(/) ->:£. Then by Lemma 4
we can assume () -> 0 and II Bgli/() ->:£. Let m be the slope of Bg; we next
compute bounds for Iml and IIBgll. Since the graph of Bg is a straight line,
it follows from Bg( - 1) ~ 26 and Bg( I )~ 2() that Bg(x) ~ 26, for all
x E [ - I, 1]. From (4.2) we also have m = (Bg(O) - Bg( - I ))/(0 - ( - 1)) ~
-{3 - 2C5 - 2C5 = -fJ - 4(), so Bg( I) = Bg(O) + (1- O)m ~ --{J - 2(j -{3­

46 = -2{3 - 66. Further, m = (Bg( 1) - Bg( -I + a))/( 1- (- I + :x)) ~ (2()­
(-26))/(2-:x) = 4C5/(2-:x), so Bg( -- I ) = Bg( -I +:x)+ (-1 - (-I + :x))m

~-2()-46a/(2-:x). Thus since a<~ we have Iml~max(/3+4(),

46/(2-:x)) = {3+4(), and IIBg:1 ~ max(2e5,2{J+M,2e5+4():x/(2-:x)) =
2{3 + M, i.e"

Iml ~ {J +4()

:1 Bgil ~ 2{3 + 6().
(4.3 )

Now fJ -> 0, 6 -> 0, and }' -> 0, so we can assume Iml and II Bgil are as small
as we like, so we can assume Iml is smaller than the absolute values of the
slopes of the four line segments comprising j; and if the zeroes of I are
denoted by ~I' ~2' ~3' ~4 then we can assume the minus extremals of g lie
in [-I,~du(~2'~3)u(~4,1], while the plus extremals of g lie in
(~I'~2)U(~3'~4)' Now we claim that if g has (respectively) a minus
extremal in [-I'~I)' a plus extremal in (~1'~2)' a minus extremal in
(~2' ~3)' a plus extremal in (~3' ~4)' or minus extremal in (~4' I], then
(respectively)
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- 2() :( B( g)( - 1)

B( g)( - 1+ ex) :( 26

- 2() + ;' :( B( g)( - 1+ (')

B(g)(O) :( 2() - II

- 26:( B( g)( [ ).
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(4.4 )

To prove the first inequality (the others are similar), note that if
x* E [ -1, '::-1) satisfies g(X*) - Bg(x*) = - II g - Bgll, then using (4.1) we
have f( -1) - Bg( - 1) :(f(x*) - Bg(x*) (since Iml:( the slope of the first
segment off)=g(x*)-Bg(x*)-g(x*)+f(x*):( -(1-6)+6= -1 +26,
so Bg( - 1)~ f( - 1) + 1 - 26 = - 2(). Now there are five possible configura­
tions for the points of an alternant for g. In the two cases which include
minus extremals in both [- 1,'::-1) and ['::-4,1] we get from (4.2) and
(4.4) that il Bgil :( 26, so II Bg - B/II/ilf - gil :( 2(5jc5 = 2. In the remaining
three cases there will be a minus extremal in ('::-2' '::-3), and we compute
m = (Bg( - 1 + c) - Bg( - 1))/c ~ ( - 26 + i' - 2<5)/c = L' - 46)/c and m =
(Bg(l) - Bg( -1 + c))/(2 - c) :( (2() - (-26 + }'))/(2 - c) = (46 -}')/(2 - c),
so (1'-4(»)/c:( -(;,-46)/(2-c). so (}'-4(»)(I/c+ 1/(2-c)):(0, so ;':(46.
It then follows from (4.3) that IIBgl1 :(2(Ph)}'+66:(8(P/i')()+66, so
II Bg - B/II/ilf - gil :( 8( Ph) + 6, so this inequality holds in all cases,
contradicting the assumption Bgli/() ---> x and completing the proof that S
has a uniform Lipschitz constant.

For an unbounded sequence of Lipschitz constants define piecewise
linear functions f~ and g x by

x= -1, I

X= -I +ex

X= -I + 2ex

x=o

and for f~, let c = 2ex, }' = ex 2
, and Ii = ex.

Then Bg,(x) = -ex(x+ 1), Ilf,-g,!1 =3ex 2 and

IIBg,11 2
---=---->X
�lf~-g,11 3): ~

as ex ---> O.

Observe here that lih does not remain bounded as }' ---> O.

Remarks. (1) When Ii = 1 and c = 2ex the previous functions fare
almost the functions f in [7, Example 2].

(2) The example can also be modified for the situation IEol ~n+ I.
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The modified example just changes f on U, I] making it identically - I
there. As before when flil' is bounded there is a uniform Lipschitz constant;
there is an example where f1/~' is not bounded and there is no uniform
Lipschitz constant.
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